Living systematic reviews: 2. Combining human and machine effort.
نویسندگان
چکیده
New approaches to evidence synthesis, which use human effort and machine automation in mutually reinforcing ways, can enhance the feasibility and sustainability of living systematic reviews. Human effort is a scarce and valuable resource, required when automation is impossible or undesirable, and includes contributions from online communities ("crowds") as well as more conventional contributions from review authors and information specialists. Automation can assist with some systematic review tasks, including searching, eligibility assessment, identification and retrieval of full-text reports, extraction of data, and risk of bias assessment. Workflows can be developed in which human effort and machine automation can each enable the other to operate in more effective and efficient ways, offering substantial enhancement to the productivity of systematic reviews. This paper describes and discusses the potential-and limitations-of new ways of undertaking specific tasks in living systematic reviews, identifying areas where these human/machine "technologies" are already in use, and where further research and development is needed. While the context is living systematic reviews, many of these enabling technologies apply equally to standard approaches to systematic reviewing.
منابع مشابه
An Introduction to Living Systematic Reviews
سخن سردبیر Editorial مجله دانشگاه علوم پزشکی رفسنجان دوره 20، اردیبهشت 1400، 146-145 درآمدی بر مرورهای نظاممند زنده An Introduction to Living Systematic Reviews محسن رضائیان[1] M. Rezaeian تا کنون در سخنان سردبیری مجله دانشگاه، درباره انواع مقالات مروری، مطالب گوناگونی را به رشته تحریر در آوردهایم. هدف از نگارش این مقالات، آشنا ساختن خوانندگان و نویسندگان فرهیخته م...
متن کاملMachine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction
Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...
متن کاملActive Learning for the Automation of Medical Systematic Review Creation
While systematic reviews (SRs) are positioned as an essential element of modern evidence-based medical practice, the creation of these reviews is resource intensive. To mitigate this problem there has been some attempts to leverage supervised machine learning to automate the article triage procedure. This approach has been proved to be helpful for updating existing SRs. However, this technique ...
متن کاملCombining Crowd and Expert Labels Using Decision Theoretic Active Learning
We consider a finite-pool data categorization scenario which requires exhaustively classifying a given set of examples with a limited budget. We adopt a hybrid human-machine approach which blends automatic machine learning with human labeling across a tiered workforce composed of domain experts and crowd workers. To effectively achieve high-accuracy labels over the instances in the pool at mini...
متن کاملارزیابی کیفیت گزارش مطالعات مرور نظاممند و فراتحلیل در مجلات پرستاری و مامایی ایران
Background & Aim: In the view of the importance of evidence-based clinical practice in recent years, clinical disciplines such as nursing and midwifery have found a special need to systematic review and meta-analysis. However, systematic reviews and meta-analysises like any other studies may be poorly designed and implemented. Therefore, certain guidelines have been considered for reporting of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of clinical epidemiology
دوره 91 شماره
صفحات -
تاریخ انتشار 2017